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Blockchain Data Analysis

o Data stored in a public blockchain can be considered big data.

o Volume: Ethereum archive nodes that store a complete snapshot of the Ethereum blockchain, 
including all the transaction records, take up to 4TB of space. 

https://decrypt.co/24779/ethereum-archive-nodes-now-take-up-4-terabytes-of-space

o Velocity: Ethereum blockchain has processed more than 1.1 million transactions per day in July 2021. 

https://www.statista.com/statistics/730838/number-of-daily-cryptocurrency-transactions-by-type/

o Veracity: Ethereum contains a vast number of heterogeneous interactions, e.g., user-to-user, user-to-
contract, contract-to-user, and contract-to-contract across multiple layers via external and internal 
transactions, ether, tokens, dAapps, etc. 

Interactions in the Ethereum Blockchain Network
5/75 Arijit Khan
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Graph-based Blockchain Data Analysis

Interactions in the Ethereum Blockchain Network

o Data analytic methods can be applied to extract knowledge hidden in the blockchain.

o Several recent research works performed graph analysis on the publicly available blockchain data to reveal insights 
into its transactions and for important downstream tasks, e.g., cryptocurrency price prediction, address clustering, 
phishing scams, and counterfeit tokens detection. 

Various graphs created from interactions between accounts, 
transactions, token transfers; as well as their common applications
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Blockchain Data Analysis: Applications

o Bulk of the works conducted graph analysis to gain insights into transaction and token 
transfers. 

o Some of them considered downstream tasks, e.g., node classification, link prediction, 
anomaly detection, token price prediction. 

o Most tools for blockchain data are related to e-crime or financial (e.g., price, investor) 
analytics. 

o From ransomware payment detection to sextortion discovery, transaction graph analysis 
has proven useful to study blockchain address importance and to cluster them. 

Oggier, F., Datta, A. and Phetsouvanh, S., 2020. An ego network analysis of sextortionists. Social Network Analysis and Mining, 10(1), pp.1-14.

Bistarelli, S., Mercanti, I. and Santini, F., 2018, August. A suite of tools for the forensic analysis of bitcoin transactions: Preliminary report. In European Conference on Parallel 
Processing (pp. 329-341). Springer, Cham.

Wu, J., Lin, K., Lin, D., Zheng, Z., Huang, H., and Zheng, Z. (2022). Financial crimes in web3-empowered metaverse: taxonomy, countermeasures, and opportunities. IEEE Open J. 
Comput. Soc. 4, 37–49.
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oAssess health of crypto eco-systems, data mining and analytics skills to 
help clients avoid transaction risks.

oNetwork features of cryptocurrencies transactions as a proxy for market 
sensing. 

oCompanies to build better blockchain ecosystems, blockchain 
intelligence (https://blockchaingroup.io), blockchain-based social 
networks (Steemit) and blockchain search engines

Intelligent Blockchain Ecosystem 
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Blockchain Data Analytics: Challenges
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o Anonymity: tracking addresses and analyzing transaction patterns difficult.

o Limited visibility: compiled binary of smart contract code visible on the blockchain. 

o Blockchain data: Volume, velocity, Veracity (Big Data). 

o Adversarial behaviors: long-range attacks, manipulations, malicious smart contracts, 
abusive users. 

o Machine Learning Challenges: skewed distribution, lack of ground truth,  new attacks, 
distribution drift, external influences, black-box ML models.

P. Azad, C. G. Akcora, A. Khan, "Machine Learning for 

Blockchain Data Analysis: Progress and Opportunities", 

CoRR abs/2404.18251, 2024.



Data Management and AI for 
Blockchain Data Analysis 
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Blockchain Data ETL

Graph-based Blockchain Data Analysis
Account-based graphs, UTXO graphs

Advanced Data Analytics for Blockchain Graphs
Topological data analysis 
Graph machine learning 
Higher-order structural analysis 

P. Azad, C. G. Akcora, A. Khan, "Machine Learning for 

Blockchain Data Analysis: Progress and Opportunities", 

CoRR abs/2404.18251, 2024.

A. Khan and C. G. Akcora, "Graph-based Management and 

Mining of Blockchain Data", CIKM 2022.

Graph ML
transaction graph

Temporal ML
transaction, price

Sequential ML
transaction, smart contract, social data

Code ML
smart contract

Text ML
social data



Blockchain Data Extraction
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o Run a full-node on the blockchain to collect all historic transactions – e.g., Bitcoin-Core,  
Geth, and Parity.

➢Massive-storage and hardware requirement; more than a week to fully synchronize entire data at a newly connected 
node.

➢ Not good for ad-hoc queries.

o Web3 services and APIs for data extraction – e.g., Infura, SoChain, and Quicknode.

➢ high costs if users want to extract large amounts of data; paid and slow APIs.

➢ Blockchain data is stored at clients in heterogeneous, complex data structures, in binary or in encrypted format, 
which cannot be directly used for exploration, mining, or visualization.

o Well-processed blockchain datasets – e.g., 
➢ Google Big Query (https://cloud.google.com/blog/products/data-analytics/introducing-six-new-cryptocurrencies-

in-bigquery-public-datasets-and-how-to-analyze-them ) 

➢ https://xblock.pro/#/ (Sun Yat-sen University and others)

➢ ETL (extract-transform-load) can still be an issue.

Data Extraction Methods 
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Blockchain Data ETL 



V. H. Su, S. S. Gupta, A. Khan. Automating ETL 
and mining of ethereum blockchain network, 
WSDM 2022.

table_id utc_created_date utc_modified_date rows_millions size_gb

blocks
2019-01-15 

13:30:29.658

2021-05-06 

05:29:23.607
11.72 12.07

token_transfers
2019-01-15 

13:28:07.793

2021-05-06 

05:31:55.894
595.69 171.88

traces
2019-01-15 

13:55:23.777

2021-05-06 

05:22:25.641
2775.28 1626.74

transactions
2019-01-15 

13:29:49.289

2021-05-06 

05:28:48.798
985.76 455.64

These four tables from Google BigQuery are the most important sets of data from

the Ethereum blockchain in terms of the primary “interaction networks” between

User and Contract accounts.

Source – Google BigQuery
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ETL Problem to Solve

Graph Representation
Tabular 

Representation

from_addres

s

to_address edge_data block_numbe

r

0xd3b1fad... 0x1625a9f...

...

0

0x4bc3c20... 0xfe611a3... 1

0x40af81b... 0x5716678... 2

0x9786a24... 0xa25a8dc... 3

How to 
perform 

this step?

Convert this To this

V. H. Su, S. S. Gupta, A. Khan. Automating ETL 
and mining of ethereum blockchain network, 
WSDM 2022.15/75 Arijit Khan



Demonstration – Notebook Interface

Check out the toolbox – open-sourced at:

https://github.com/voonhousntu/ethernet

V. H. Su, S. S. Gupta, A. Khan. Automating ETL 
and mining of ethereum blockchain network, 
WSDM 2022.16/75 Arijit Khan

Output visualization for the constructed graph in Neo4J



Account Graphs: Ethereum
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Graphs Constructed

o Survey: A. Khan, "Graph 
analysis of the Ethereum 
blockchain data: a survey 
of datasets, techniques, 
and future direction", IEEE 
International Conference 
on Blockchain 2022
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o Survey: A. Khan, " Graph 
analysis of the Ethereum
blockchain data: a survey of 
datasets, techniques, and 
future direction ", IEEE 
International Conference on 
Blockchain 2022

o Static graphs
o Dynamic graphs
o Temporal snapshot graphs
o Directed graphs
o Weighted graphs (?weight) 
o Simple and multi-graphs
o Attributed graphs
o Multi-layer networks

Graphs Constructed
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o User-to-User Graph

o Smart Contract Creation Graph

o Smart Contract Invocation Graph

o ContractNet/ Contract-to-Contract Graph

Graphs between Accounts: 

o T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhang, “Understanding 
Ethereum via graph analysis,” in INFOCOM, 2018.

o A. Anoaica and H. Levard, “Quantitative description of internal activity on the 
Ethereum public blockchain,” in NTMS, 2018.

o Q. Bai, C. Zhang, Y. Xu, X. Chen, and X. Wang, “Evolution of Ethereum: a temporal 
graph perspective,” in IFIP Net. Conf., 2020. 

o X. T. Lee, A. Khan, S. S. Gupta, Y. H. Ong, and X. Liu, “Measurements, analyses, and 
insights on the entire Ethereum blockchain network,” in WWW, 2020. 

o L. Zhao, S. S. Gupta, A. Khan, and R. Luo, “Temporal analysis of the entire 
Ethereum blockchain network,” in WWW, 2021.

o Ethereum has two types of accounts:

➢ Externally owned accounts (EOAs) are accounts controlled by private

keys. If a participant own the private key of an EOA, the participant has
the ability to send ether and messages from it.

➢ Smart contract code controlled accounts have their own code, and
are controlled by the code.
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o Transaction Graph/ Money Flow Graph/ TransactionNet

Graphs Based on Transaction of Ether: 

o Regular, or external transaction denotes a transaction
with the sender address being an EOA.

o Internal transaction refers to a transfer that occurs when
the sender address is a smart contract, e.g., a smart contract
calling another smart contract or an EOA.

o Token transfer is an event log for transfer of tokens only.

➢Token transfers can be considered as internal transactions.
Internal transactions are not broadcast to the network in the
form of regular transactions.

o T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhang, “Understanding 
Ethereum via graph analysis,” in INFOCOM, 2018.

o J. Liang, L. Li, and D. Zeng, “Evolutionary dynamics of cryptocurrency transaction 
networks: an empirical study,” PLoS ONE, vol. 13, no. 8, p. e0202202, 2018.

o D. Guo, J. Dong, and K. Wang, “Graph structure and statistical properties of 
Ethereum transaction relationships,” Inf. Sci., vol. 492, pp. 58–71, 2019.

o S. Ferretti and G. D’Angelo, “On the Ethereum blockchain structure: a complex 
networks theory perspective,” Concurr. Comput. Pract. Exp., vol. 32, no. 12, 2020.

o D. Lin, J. Wu, Q. Yuan, and Z. Zheng, “Modeling and understanding Ethereum 
transaction records via a complex network approach,” IEEE Trans. Circuits Syst., vol. 
67-II, no. 11, pp. 2737–2741, 2020.

o X. T. Lee, A. Khan, S. S. Gupta, Y. H. Ong, and X. Liu, “Measurements, analyses, and 
insights on the entire Ethereum blockchain network,” in WWW, 2020. 

o L. Zhao, S. S. Gupta, A. Khan, and R. Luo, “Temporal analysis of the entire 
Ethereum blockchain network,” in WWW, 2021.
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o Full ERC20 token transfer graph

o Individual ERC20 token transfer graphs

o Individual ERC721 token transfer graphs

o TokenNet/ Token transfer graph

o Token creator graph

o Token holder graph

Graphs Based on Transfer of Tokens: 
o S. Somin, G. Gordon, and Y. Altshuler, “Network analysis of ERC20 tokens trading 
on Ethereum blockchain,” in Complex Systems, 2018.

o F. Victor and B. K. L¨uders, “Measuring ethereum-based ERC20 token networks,” 
in Financial Cryptography and Data Security, 2019.

oY. Chen and H. K. T. Ng, “Deep learning Ethereum token price prediction with 
network motif analysis,” in ICDM Workshops, 2019.

oW. Chen, T. Zhang, Z. Chen, Z. Zheng, and Y. Lu, “Traveling the token world: A graph 
analysis of Ethereum ERC20 token ecosystem,” in WWW, 2020

o Y. Li, U. Islambekov, C. G. Akcora, E. Smirnova, Y. R. Gel, and M. Kantarcioglu, 
“Dissecting Ethereum blockchain analytics: what we learn from topology and 
geometry of the Ethereum graph?” in SDM, 2020.

oB. Gao, H. Wang, P. Xia, S. Wu, Y. Zhou, X. Luo, and G. Tyson, “Tracking counterfeit 
cryptocurrency end-to-end,” Proc. ACM Meas. Anal. Comput. Syst., vol. 4, no. 3, pp. 
50:1–50:28, 2020.

o X. T. Lee, A. Khan, S. S. Gupta, Y. H. Ong, and X. Liu, “Measurements, analyses, and 
insights on the entire Ethereum blockchain network,” in WWW, 2020. 

o L. Zhao, S. S. Gupta, A. Khan, and R. Luo, “Temporal analysis of the entire 
Ethereum blockchain network,” in WWW, 2021.

o D. Ofori-Boateng, I. Segovia-Dominguez, C. G. Akcora, M. Kantarcioglu, and Y. R. 
Gel, “Topological anomaly detection in dynamic multilayer blockchain networks,” 
in ECML PKDD, 2021.

oS. Casale-Brunet, P. Ribeca, P. Doyle, and M. Mattavelli, “Networks of Ethereum 
non-fungible tokens: a graph-based analysis of the ERC-721 ecosystem,” in 
Blockchain, 2021.
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Ethereum Network Properties

Basic Network Properties
Local Network Properties
Global Network Properties
Temporal Network Properties

o X. T. Lee, A. Khan, S. S. Gupta, Y. H. Ong, and X. Liu, “Measurements, analyses, and insights on the entire 
Ethereum blockchain network,” in WWW, 2020. 

o L. Zhao, S. S. Gupta, A. Khan, and R. Luo, “Temporal analysis of the entire Ethereum blockchain network,” in 
WWW, 2021.

Graph Analysis on Blockchain Graphs 
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Motivation

o Blockchain is a fascinating ecosystem of humans and autonomous agents. 
o Not like conventional social networks, where the players are human users.
o Not like cryptocurrencies, where all interactions are transfer of value/asset.

Blockchain network is closer to the Internet or Web, where users 
interact with one another, as well as with programs. 

We study a public permissionless blockchain network as a complex system, and we 
choose Ethereum, the most prominent blockchain network, for this purpose.

24/75 Arijit Khan



Ethereum

o Introduced an automation layer on top of a blockchain through contracts. 
o Facilitates a decentralized computing environment across the blockchain.

Transaction-based state machine. Global state made up of 

accounts. Transfer of value/information between accounts 

cause transitions in the state. Recorded in the blockchain.

We target the network of interactions between the User and Contract accounts that 
make up the global state of Ethereum, and study them as complex systems.

25/75 Arijit Khan



TraceNet TransactionNet
v : user and smart contract addresses v : user and smart contract addresses
a : all successful traces/transactions a : all successful transactions by users

ContractNet TokenNet
v : only smart contract addresses v : user and smart contract addresses
a : all successful traces/messages a : all successful transaction of tokens

While TraceNet presents a global view of interactions, ContractNet focusses on 
the multi-agent network of contracts. While TransactionNet depicts all of basic 
ether transactions, TokenNet focusses on the rich and diverse token ecosystem.

Networks

1 3

2 4
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Source : Google Cloud Platform BigQuery
bigquery-public-data.Ethereum_blockchain.

Data extracted/mined : Block #0 till #7185508
Blocks recorded upto 2019-02-07 00:00:27 UTC
Seven different tables in the Ethereum dataset.

Data cleaning : Removing failed traces and handling Null addresses appropriately.

Network Data
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We observe that self-loop percentage in ContractNet MultiDiGraph is significantly 
higher than that in the three other networks. Moreover, the number of self-loops 
in its MultiDiGraph is almost 40 times than that in its own simple, undirected 
graph, indicating that a lot of smart contracts make multiple calls to itself.

Basic Network Properties

Vertices and Arcs, Self-Loops and Density 
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We compare power-law distribution model against (i) exponential, (ii) log-normal, (iii) 
power-law with exponential cutoff, and (iv) stretched exponential or Weibull.

We see that for our larger networks, TraceNet and TransactionNet, three of the four 
alternative heavy-tailed distributions are better fit than the power-law.

Local Network Properties

Vertex Degree Distribution
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Indegree and outdegree of vertices in the four 
network MultiDiGraphs.

≈ 50% have similar in and out. 

≈ 30% have significantly higher in (ICO smart 
contracts appear a lot in the to_address). 

≈ 20% have significantly higher out  (mining 
pools and mixers generally appear a lot in the 
from_address).

This is similar to the Web, involving hubs and 
authorities, and it is unlike the case of 
standard social networks.

Local Network Properties
Indegree and Outdegree Correlation

Arijit Khan



Reciprocity and Assortativity

Reciprocity: Measure of vertices 
being mutually linked in network.

Assortativity: Measure of vertices 
being linked to similar-degree ones.

Unlike social networks, all four of our blockchain networks are Disassortative.
Negative assortativity implies relatively more scenarios of addresses (vertices) 
with different degrees transacting with each other in the blockchain networks.

Global Network Properties
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Strong and Weakly Connected Components

Number of WCC is significantly lesser than the number of SCC in their respective 
networks, due to lesser bidirectional edges between majority pairs of vertices.

ContractNet has the least # of SCC in the networks, indicating relatively stronger 
connectivity within smart contracts. Similar to the Web, the blockchain networks 
have a single, large SCC, with about 98% of the remaining vertices within reach.

Global Network Properties
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Core Decomposition

k-core is the maximal 
subgraph, where each 
vertex is connected to 
at least k other vertices
within the subgraph. 

ContractNet and TokenNet have larger core indices for vertices in the innermost 
cores, indicating higher density of their innermost cores. ContractNet’s innermost 
core is the largest, implying more vertices participating in denser substructures.

Global Network Properties
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Triangles, Transitivity, Clustering Coefficients

Transitivity is quite low.
This suggests that in the 
blockchain networks, we
do not have a conducive
environment for creation 
of triangles. Indeed, non-social networks have lower transitivity coefficients. 

High-degree vertices are often “loner-star”, that is, connected to mostly low-
degree vertices, resulting in lack of community structure in blockchain graphs.

Global Network Properties
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Higher-Order Motifs Counting

The most frequent motifs in the 
blockchain graphs are primarily 
chain and star-shaped. Counts 
for more complex patterns, 
e.g., cliques and cycles, are less. 

We check the density of a motif, the ratio of its count to its count in a complete 
graph having same number of vertices as the innermost core. The densities for 
more complex patterns are quite less, indicating lack of community structure.

Global Network Properties
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Articulation points, Adhesion, Cohesion, Average path lengths, Radius, Diameter

Adhesion and Cohesion for all blockchain networks are 1, indicating that removal 
of the only one vertex or only one arc disconnects the respective SCCs and WCCs.

Interestingly, similar to social networks, blockchain graphs are also small-world.
However, in both our larger networks, TraceNet and TransactionNet, there are 
vertices which are far apart, making the radius and the diameter quite large.

Global Network Properties
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Progress of Core Decomposition in Token Networks

We study temporal evolution of the number of cores in token subgraphs against 
the corresponding evolution of price of the token in the cryptocurrency market. 
Observations clearly show a significant relationship between activity and price.

Temporal Network Properties
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Summary of Observations
o In/Out-degree characteristics are very similar to the Web (hub/authority).
o The blockchain networks are disassortative, having very low transitivity.
o Complex motifs occur quite less, indicating lack of community structure.
o Removal of one vertex or arc can disconnect the entire largest SCC/WCC.
o Blockchain networks are surprisingly small-world and well-connected.
o Networks contain a single, large SCC, with 98% of the vertices reachable.
o ContractNet and TokenNet yield larger core indices for vertices in the 

innermost cores, indicating higher density of their innermost cores.
o Significant relationship between temporal relationship of inner cores of 

prominent token networks and the price of the tokens in the market.

the Web

social network

both 

networks

financial

https://github.com/sgsourav/blockchain-network-analysis
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Motivation and Research Questions 

o Investigate the evolutionary nature of 
Ethereum interaction networks from a 
temporal graph perspective

o Address 3 main questions:

➢ How do Ethereum network evolve over time?

➢ How network properties changes over time, what is 
the right “time granularity” for such temporal 
analysis?

➢ Detect meaningful communities and forecast the 
survival of communities in succeeding months. 

L. Zhao, S. S. Gupta, A. Khan, and R. Luo, “Temporal 
analysis of the entire Ethereum blockchain
network,” in WWW, 2021.
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Evolution of Ethereum Network (Vertex) 

(b) ContractNet(a) TransactionNet

o The number of new vertices and arcs 
added is almost of the same order of 
total number of vertices and arcs at 
that time => Ethereum interaction 
networks growing at a fast speed. 
(highly active network).

o Vertices which are disappeared keep 
increasing.  
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Network Growth Model

The increasing percentage (3rd column) 
indicates:

o As the Ethereum network matures, more 
accounts remain active.

o And more than half of new vertices 
participate in interaction with old vertices. 
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o Correlation between old vertex degree in previous 
year (2018) to its number of new connections in the 
current year (2019).

o High degree vertices are highly likely to have more 
new vertex connections in next year. 

o The observation indicates that the Ethereum graphs 
follow the preferential attachment growth model.

(b) ContractNet

(a) TransactionNet

Network Growth Model
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Average Activity Period of Vertices

TransactionNet

o Active period = duration (month) from 

its first transaction to the last transaction 

between Jan 2016 and Dec 2019.

o ContractNet: 91% has no more than 6 

month active period.

o TransactionNet: Longer active period.

o In general, 88% of accounts have an 

active period of no more than 6 months, 

and up to 68% of accounts are only active 

within a month. ContractNet



Temporal Evolution of Network Properties 

o Investigate network properties changes over time to understand how the network is 

connected and changed over time.

o Reveal any anomaly (beyond average) occurred in a specific time duration.

o A good time granularity as the shortest time duration by which we can detect an anomaly.
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Temporal Evolution of Network Properties 

o Oct 2016: Plenty of positive news on Ethereum in the media → a lot of tokens were deployed on 

the network, which increased the number of one-directional arcs to the token contracts. 
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Detection of ContractNet Communities 

o Multilevel algorithm scales well over large-scale datasets and 

produce good-quality communities.

o Consider multi, undirected version of graph .

o # vertices and arcs in each community obtained over 

ContractNet 2018 and 2019 networks.

o The size of the communities follows power-law: a few large 

communities followed by a long-tail of remaining small 

communities.

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large 
networks. Journal of Statistical Mechanics: Theory and Experiment 2008, 10 (2008), 10008.



Community Continuation Prediction

o Data preparation: window size of 3 months and slide stride of 1 month.

o Training dataset: the network properties of communities existing in 3-

month period dataset.

o Aim: predict whether the communities still exists in next 1 month. 

o Model: Logistic Regression & Random Forest.

Random Forest prediction accuracy for 
ContractNet 2019

Logistic Regression prediction accuracy for 
ContractNet 2019
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Summary of Observation

oEthereum interaction network grows at a fast speed. 

oNetworks follow the preferential attachment growth model.

oUser accounts remain active much longer than smart contracts. 

oReveal anomalies occurred in a specific time duration and correlate them with external 

‘real-life’ aspects of network. 

oDetect meaningful communities in Ethereum network using multilevel algorithm. 

oForecast the continuation of communities in succeeding months leveraging on the 

relevant graph properties and ML models. Achieving up to 77% correct predictions for 

continuation. 

https://github.com/LinZhao89/Ethereum-analysis
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Advanced Data Analytics for Blockchain Graphs
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Topological Data Analysis (TDA)

oData depth   (Multivariate analysis/ statistics)

oPersistent homology

oTDA mapper 

F. M. Taiwo, U. Islambekov, C. G. Akcora. Explaining 
the Power of Topological Data Analysis in Graph 
Machine Learning. CoRR abs/2401.04250 (2024)



What is the true shape 
of this data?

Why TDA?

- capture intricate shapes and their persistence.
- robust in handling noisy and high-dimensional datasets.
- expensive computation.
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Data Depth
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J. Zhu, A. Khan, and C. G. Akcora (2024). Data depth and 

core-based trend detection on blockchain transaction 

networks. Front. Blockchain

- measures how deep a data point is relative to a data cloud.

- deals with the shape of the data.

- Nodes with high property values (e.g., large edge weights)  
generally have a low depth, while nodes with low property 
values (e.g., most blockchain nodes that trade small amounts 
of tokens) often have a high depth. 

- Community structure around the node also plays a role.

Mahalanobis depth to the origin:



Graph Core Decomposition
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J. Zhu, A. Khan, and C. G. Akcora (2024). Data depth and 

core-based trend detection on blockchain transaction 

networks. Front. Blockchain

Classic k-core decomposition

What if a node has multiple features?



Data Depth-based Core Decomposition

53/75 Arijit Khan

J. Zhu, A. Khan, and C. G. Akcora (2024). Data depth and 

core-based trend detection on blockchain transaction 

networks. Front. Blockchain

- Nodes with high property values (e.g., large edge 
weights)  generally have a low depth, while nodes with 
low property values (e.g., most blockchain nodes that 
trade small amounts of tokens) often have a high depth. 

- a data depth threshold ϵ ∈ [0, 1] is applied to remove 
high-depth nodes iteratively.

- Nodes are in the α = (1 − ϵ)-core if their depth, relative to 
themselves, is no more than ϵ.

- We are interested in finding the innermost core 
(innerCore) by setting ϵ to a small value.

F. Victor, C. G. Akcora, Y. R. Gel, M. Kantarcioglu. 
AlphaCore: Data Depth based Core Decomposition. 
KDD 2021.



Inner Core Expansion and Decay
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Flowchart of our methodology Behavioral patterns based on innerCore
expansion and decay over time



Inner Core Motif Analysis
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Five 3-node motifs exhibiting buy and sell behaviors. Nodes labeled C denote the 
center where a center with an in-degree = 2 indicates buy behavior and an out-
degree = 2 indicates sell behavior



The Collapse of LunaTerra

56/75 Arijit Khan

J. Zhu, A. Khan, and C. G. Akcora (2024). Data depth and 

core-based trend detection on blockchain transaction 

networks. Front. Blockchain

Stablecoin decay and expansion measures. On May 8 (shown with the 
vertical blue line), UST loses its $1 peg and falls to as low as 35 cents.

- For approximately 2 weeks afterward, a consistent
behavioral pattern of faith is characterized by low
expansion and low decay. During this period, few
new traders entered or left the stablecoin network.
There was still faith in the remaining traders that
perhaps a large stablecoin such as UST could
rebound and restore its peg with USD and thus,
they refrained from engaging in any transactions.

- There is a delayed reaction from traders when a
significant unannounced event occurs due to
indecision, and there is a general trend of inactivity
in the following period.



The Collapse of LunaTerra
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Numbers of center addresses in motifs identified by our motif analysis
method that are known exchanges. Motif centers identified from
InnerCores have a high ratio of non-exchange addresses to exchange
addresses (≈99%). This shows the effectiveness of our method to
identify potentially meaningful addresses in a network different from
high-traffic exchange addresses.

- Before the LunaTerra collapse, nodes 
exhibiting both high selling and buying 
behaviors, could have influenced the initial 
phase of the crash. 

- We identify the addresses that occurred most 
frequently as motif centers in InnerCores.

- Exchanges are well-known intermediary hubs 
to facilitate transfers between traders, hence 
not very interesting in our context.

- addresses that are not exchanges are mostly 
owned by traders and thus, the existence of 
such addresses as motif centers is interesting.



The Collapse of LunaTerra
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Nansen (https://www.nansen.ai/) is a prominent blockchain analytics platform that conducted a thorough analysis of the
LunaTerra collapse in May 2022 and identified 11 important addresses that played central roles. We have captured 9 of 11
externally owned addresses (EoAs) identified by Nansen.ai that occurred as center addresses for our motif types on days
immediately leading up to the LunaTerra collapse. We notice that the importance score percentile ranks of these
addresses are higher compared to that of other center addresses for the same motif type on the same day, indicating that
these addresses were important traders contributing to the buy or sell behavior associated with the motif on the day.



Ethereum’s Switch to PoS
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The move of Ethereum to Proof-of-Stake mining took place in two 
stages, indicated by 2 vertical blue lines (September 6 and 15, 2022). 
An expansion peak on 5 Sep 2022 detects the anomaly 1 day before
the first stage commenced. A pattern of hope is observed.



USDC’s Temporary Peg Loss
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On 11 Mar 2023 (shown with the vertical blue line), USDC loses its $1 peg and falls to as low as 87 cents. A sudden surge in
expansion on 11 May 2023 happened due to many traders liquidating their USDC holdings in response to the stablecoin’s all-time
low value. In the subsequent 3 days following the temporary loss of USDC’s peg, a distinct series of behavioral patterns emerged,
characterized by alternating signals of despair, hope, and despair again, before eventually stabilizing. During this 3-day period,
Circle’s reassurances regarding the recovery of lost reserves gradually restored trust among its traders.



Efficiency Results
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Our method InnerCore is also the fastest compared to existing methods. Innercore requires approximately
0.10 times the average computation time of AlphaCore, 0.12 times the average computation time of the
highest graph k-core, and 0.14 times the average computation time of SCPD.



Summary
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o InnerCore expansion and decay provide a sentiment indicator for the networks and 

explain trader mood.

oThe centered-motif analysis in the InnerCore can detect market manipulators.

o The scalability and computational efficiency of InnerCore discovery make it well-suited 

for analyzing large temporal graphs

https://github.com/JZ-FSDev/InnerCore
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Graphs Representation Learning

Graph Node embedding/ vectors Downstream tasks

Node classification
Link prediction
Graph classification
Entity resolution
Question Answering
… … … 

Matrix factorization
Random walk sampling + Skip-Gram learning
Graph convolutional neural networks (GCN)
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Machine Learning on Blockchain Graphs

Paper Embedding Method Downstream Task

D. Lin, J. Wu, Q. Yuan, and Z. Zheng. Modeling and 
understanding Ethereum transaction records via a complex 
network approach. IEEE TRANSACTIONS ON CIRCUITS AND 
SYSTEMS II: EXPRESS BRIEFS, VOL. 67, NO. 11, NOVEMBER 
2020.

Random walk sampling + 
Skip-Gram learning

Transaction (link) prediction

D. Lin, J. Wu, Q. Yuan, and Z. Zheng. T-EDGE: Temporal 
WEighted MultiDiGraph Embedding for Ethereum transaction
network analysis. Front. Phys., 2020, Sec. Social Physics.

Random walk sampling + 
Skip-Gram learning

Transaction (link) prediction

F. Poursafaei, R. Rabbany, and Z. Zilic. SIGTRAN: Signature 
vectors for detecting illicit activities in Blockchain transaction 
networks. PAKDD 2021.

Random walk sampling + 
Skip-Gram learning + Feature

Detecting illicit activities (node 
classification)

J. Wu , Q. Yuan, D. Lin , W. You, W. Chen, C. Chen. Who are the 
phishers? Phishing scam detection on Ethereum via network 
embedding. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND 
CYBERNETICS: SYSTEMS 2020.

Random walk sampling + 
Skip-Gram learning

Phishing scams detection (node 
classification)

L. CHEN, J. PENG, Y. LIU, J. LI, F. XIE, and Z. ZHENG. Phishing 
scams detection in Ethereum transaction network. ACM Trans. 
Internet Technol. 2021.

Graph convolutional neural 
networks (GCN)

Phishing scams detection (node 
classification)

T. Yu , X. Chen, Z. Xu, and J. Xu. MP-GCN: A phishing nodes 
detection approach via graph convolution network for 
Ethereum. Appl. Sci. 2022.

Graph convolutional neural 
networks (GCN)

Phishing scams detection (node 
classification)
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Survey about Machine Learning on Blockchain Data
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P. Azad, C. G. Akcora, A. Khan, "Machine Learning for 

Blockchain Data Analysis: Progress and Opportunities", 

CoRR abs/2404.18251, 2024.



Higher-order Structural Analysis 
on Blockchain Graphs
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Blockchain Hypergraphs
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Flow of coins creates a hyper-edge that connects more than two nodes, 
providing a more nuanced view of asset transfers.

Flow of coins between seemingly different addresses which are owned by the 
same user, creating hyper-edges.

S. Ranshous , C. A. Joslyn, S. Kreyling, K. Nowak, N. F. Samatova, C. L. West, and S. Winters. Exchange Pattern 
Mining in the Bitcoin Transaction Directed Hypergraph. International Financial Cryptography Association 2017.

S. Kim, M. Choe, J. Yoo, and K. Shin. Reciprocity in Directed Hypergraphs: Measures, Findings, and Generators. ICDM 
2022.
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Blockchain Datasets 
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Blockchain Data Analytic Tools

o Bartoletti et al. developed a Scala framework for blockchain data analytics. This can integrate 
relevant blockchain data with data from other sources, and organize them in a database, either 
SQL or NoSQL.

o GraphSense is an open-source platform for analyzing cryptocurrency transactions.

o BlockSci loads the parsed data as an in-memory database, which the user can either 
query directly or through a Jupyter notebook interface. 

o Industry: https://santiment.net/ , https://www.nansen.ai/ , 
https://www.blockchain.com/ , https://www.chainalysis.com/ etc. 

M. Bartoletti, S. Lande, L. Pompianu, A. Bracciali. A general framework for blockchain analytics. SERIAL@Middleware 2017.
B. Haslhofer, R. Stütz, M. Romiti, R. King. GraphSense: A general-purpose cryptoasset analytics platform. CoRR 2021. 
H. A. Kalodner, M. Möser, K. Lee, S. Goldfeder, M. Plattner, A. Chator, A. Narayanan. BlockSci: design and applications of a blockchain 
analysis platform. USENIX Security Symposium 2020.
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Blockchain Data Analytic Tools
o Information on User Accounts: https://etherscan.io/, https://cryptoscamdb.org/, 
https://tutela.xyz/ - fraud detection and classifying accounts.

o Static code analysis, machine learning on smart contracts are popular for code reuse 
checking, contract classification, and ponzi schemes detection.

o LATTE provides a novel visual smart contract construction system. This will benefit non-
programmers to easily construct a contract by manipulating visual objects and without writing 
Solidity code.   

o BiVA is a graph mining tool for the bitcoin network visualization and analysis and transaction 
pattern analysis.

T. Hu, X. Liu, T. Chen, X. Zhang, X. Huang, W. Niu, J. Lu, K. Zhou, Y. Liu. Transaction-based classification and detection approach for Ethereum smart contract. Inf. Process. 
Manag. 58(2): 102462 (2021).
S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, Y. Alexandrov. SmartCheck: static analysis of Ethereum smart contracts. WETSEB@ICSE 2018.
S. Ducasse, H. Rocha, S. Bragagnolo, M. Denker, C. Francomme. SmartAnvil: open-source tool suite for smart contract analysis. Blockchain and Web 3.0: Social, Economic, and 
Technological Challenges. 2019.
T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz. Empirical review of automated analy-sis tools on 47, 587 ethereum smart contracts. In ICSE, 2020
S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee. Ethereum smartcontract analysis tools: A systematic review. IEEE Access, 10:57037–57062, 2022.
S. Tan and S. S. Bhowmick and H.-E. Chua and X. Xiao. LATTE: visual construction of smart contracts, SIGMOD, 2020.
F. E. Oggier, A. Datta, and S. Phetsouvanh. An ego network analysis of sextortionists. Soc. Netw. Anal. Min., 10(1), 2020.
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Blockchain Data Analytic Tools

o Visualization of blockchain data: BitConeView, BitConduite, Bitcoinrain, Ethviewer, … 

Survey: N. Tovanich, N. Heulot, J.-D. Fekete, P. Isenberg. Visualization of Blockchain data: a systematic review. IEEE Trans. Vis. Comput. 
Graph. 27(7): 3135-3152 (2021)

Z. Zhong, S. Wei, Y. Xu, Y. Zhao, F. Zhou, F. Luo, and R. Shi. Silkviser: A visual explorer of blockchain-based cryptocurrency transaction data. In IEEE 
Conference on Visual Analytics Scienceand Technology, 2020.

o Natural language processing and sentiment analysis using tweets, online articles, 
cryptocurrency prices and charts, Google Trends about blockchain.

➢M. S. Tash, O. Kolesnikova, Z. Ahani, and G. Sidorov. Psycholinguistic and emotion analysis of cryptocurrency discourse on x platform. Scientific 
Reports,14(1):8585, 2024

➢O. Kraaijeveld and J. D. Smedt. The predictive power of public Twitter sentiment for forecasting cryptocurrency prices, 2020, Journal of 
International Financial Markets, Institutions and Money, 65.

➢ A.-D. Vo and Q.-P. Nguyen and C.-Y. Ock, Sentiment analysis of news for effective cryptocurrency price prediction, International Journal of 
Knowledge Engineering, 5(2), 2019.

➢ Abraham and D. Higdon and J. Nelson and J. Ibarra. Cryptocurrency price prediction using tweet volumes and sentiment analysis, SMU Data 
Science Review,  2018.    
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Open Problems
o Multilayer graphs would be an expressive model of real-world activities such as external and 

internal transactions, token transfers, dApps and DeFi usage, cross-chain analysis.

o Multimodal data could integrate information across diverse modalities
➢ blockchain transactions, smart contract code, bytecode, price, social data.  

o Due to highly dynamic nature of accounts and transactions, employed ML models must deal 
with data and model drifts. 
➢ Drift detection, incremental learning, machine unlearning and continuous learning would 

be useful. 

o Deep learning models. 
➢ Black-box: adding explainability and human-in-the-loop, reducing bias.
➢ Real-time detection.

o LLMs for Blockchain data analysis. 
➢ LLMs for understanding natural language query, interacting with transaction and contract 

data, and generating source code.
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L. Cheng, F. Zhu, Y. Wang, R. Liang, H. Liu. 
Evolve Path Tracer: Early Detection of Malicious Addresses in Crypto
currency. KDD 2023

Y. Gai, L. Zhou, K. Qin, D. Song, A. Gervais.
Blockchain Large Language Models. CoRR abs/2304.12749 (2023)


